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can produce products to restore homeostasis and pro-
vide clinical benefit. The question now is reducing
the risk and broadening the appeal so that gene
therapy can enter into the mainstream of clinical
practice.
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RETROVIRAL-ASSOCIATED ADVERSE EVENTS IN GENE
THERAPY TRIALS

The high risk of virus-mediated transduction using
recombinant retroviruses, first recognized in mice in
1983,1 became clear in pilot clinical trials when 5 of
20 patients treated for X-linked severe combined
immunodeficiency disease unfortunately developed
leukemia 3 or more years after administration of the
therapeutic retroviral vector.2-4 Whereas 3 of the 5
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were successfully treated for both immunodeficiency
and leukemia, 2 have died. A linkage between the
retrovirus carrying the therapeutic IL2gc gene and the
leukemias was inferred based on a common region of
integration upstream of a resident LMO2 oncogene in
hematopoietic stem cells (HSCs).5-11 Similarly,
gamma-retroviruses, encoding the gp91Phox gene for
treatment of chronic granulomatous disease,12,13 have
led to leukemia and 1 death,14 demonstrating that the
vectors were not synergistic with just 1 disease. These
events in HSCs cemented the notion of the dangers of
insertional mutagenesis and biological selection for
the retrovirus-induced outgrowths of treated cells.15-18

In contrast, retroviral vectors carrying either the
adenosine deaminase gene for treatment of adenosine
deaminase-linked immunodeficiency19-24 or WASp for
Wiskott-Aldrich Syndrome25 have not been associated
with similar adverse events. In the patients with chronic
granulomatous disease, retroviral integrations regional
to growth-related genes have been associated with en-
hanced proliferation.26-29 Currently, by using altered
retroviruses and appropriate doses, adverse events
have been avoided.30-32

Thus, the linkage of vector integration and adverse
mutagenesis is not unequivocal. In some cases, clonal
expansion of treated cells was temporary and devoid
of adverse effects. Indeed, limited expansion of trans-
genic cells had the potential of increasing the likelihood
of successful gene therapy. Moreover, in contrast to
early treatments of HSC, viral-mediated transduction
of T cells for adoptive immunotherapy has not resulted
in adverse outcomes.33 Thus, cell-type does make a dif-
ference. Whereas HSC with elevated expression of
growth-related genes can result in T-cell leukemia
and/or lymphoma, comparable treatments of T-cells
for adoptive immunotherapy has not resulted in undesir-
able clinical outcomes.34-36

There may be differences between cell types for inte-
gration sites as well as the availability of endogenous
genes for activation. Analyses of gamma retrovirus-
modified hematopoietic stem cells show that integration
sites were clustered often near genes involved in growth
control and cell survival (eg, in 1 study 40% of inser-
tions were clustered in only 0.36% of the genome).37,38

Retroviral parameters associated with integration
effects and genotoxicity are under intense
scrutiny.39-47 These and other studies make it clear
that only a small subset of all the integrations near
proto-oncogenes actually cause transformation.48-50

The deliberate use of insertional vectors to uncover
oncogenes by inducing leukemia and solid tumors has
exacerbated the concerns of insertional mutagenesis by
the very same vectors when used for gene therapy.
Retroviruses51-53 as well as transposons54-56 have
REV 5.1.0 DTD � TRSL620_proof � 9
long been used for this purpose, although to obtain
a meaningful number of effects, cooperating mutations
are required either by preselection of mice with
identified gene knockout genotypes or by delivering
multiple genetic hits to single genomes.57-60 Notably,
as discussed below, screens with both types of vectors
have revealed the involvement of multiple genetic
alterations to induce cancer. One consequence of these
studies has been the elucidation of the multiplicity of
mechanisms by which insertions can induce mutations
that lead to adverse events, as summarized in Fig 1.
Thus, although patients with AIDS are at increased

risk for some cancers because of their immune state,61

it has been a surprise to many that lentiviral vectors
based on the HIV-1 LTRs have not been found in pre-
clinical and clinical studies to have associated adverse
events stemming from either activation, inactivation,
and/or alteration of splicing of endogenous genes.62,63

Although the absence of cancers and leukemias
following integrations of lentiviruses (including those
with AIDS) might be due to the ability of the
lentiviral vectors to infect nondividing cells for
therapeutic benefit64 or their selection of a different
set of genetic loci for integration38,39,65-67 even though
the integration of both is directed into outward-facing
major grooves on nucleosomal DNA.68

NONVIRAL GENE THERAPY AND INSERTIONAL
MUTAGENESIS

Nonviral gene therapy is an alternative to using viral
vectors that presents an opportunity to avoid some of
the issues such as preferential integration sites associ-
ated with most viruses.69,70 Our research has revolved
around the use of the Sleeping Beauty (SB)
transposon/transposase for gene therapy71 with a recent
focus on employing the SB system to introduce a chime-
ric antigen receptor (CAR) to redirect the specificity of
human T cells. Transposons have 2 major advantages
over viruses as gene therapy vectors. First, clinical
grade manufacture and quality control, for use in
many patients is easier, more reliable, and less expen-
sive than employing clinical-grade virus. Second, unlike
viral cargos that often are integrated either into or prox-
imal to genes that can incur mutagenic risks, SB trans-
posons have few known preferences for integration
sites.72 Nevertheless, as discussed later, insertional
mutagenesis is always a concern.
Over the past 2 years, there have been significant find-

ings in areas that pertain to genotoxicity and its impact
on gene therapy. First, it is evident that endogenous
transposons are far more active in human cells than
was surmised until very recently. Two questions arise
from these findings. (1) Do these elements induce sim-
ilar genetic consequences as therapeutic transposons?
January 2013 � 11:12 pm � ce
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Fig 1. Genetic consequences of integration of therapeutic vectors into

genomes. In this instance, a transposon vector is illustrated, but the

considerations apply to any vector system. A therapeutic transposon

can integrate into 4 general categories of chromatin. Heterochromatin

will suppress expression of the transgene–no gain-of-function (GOF)

or loss-of-function (LOF) will occur. The most desirable integration

events will be into intergenic regions where the therapeutic gene

(TG)will be expressed. Integration into or proximal to a transcriptional

regulatory region can have several outcomes including GOF of the

transgenic cassette, as well as either enhancement or loss of expression

of the neighboring gene (gene X). As reviewed in the text, in some

cases the transcriptional regulatory elements of the transgene can ac-

tivate quiescent chromosomal genes. Integration of the transposon into

a transcriptional unit may allow expression of the transgene but block

expression of the host gene leading to a phenotypic loss of function be-

cause of blockage of the gene or alterations in splicing. Integration

within some genes can also lead to a dominant gain-of-function

(DGF) and/or production of a dominant-negative form (DNF) of the

original gene X.
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(2) Do cells have mechanisms to cope with insertional
mutagenic agents? Second, the results from the 1000
Genomes Project73 and ENCODE project74 have dem-
onstrated that the interactions of genetic elements in
our chromosomes are far more variable and complex
than customarily thought. These findings are reviewed
in the sections below.
In light of these recent discoveries, we have 3 objec-

tives in this review that pertain to the use of SB transpo-
sons in the clinic. (1) Evaluate the relative impact of SB
transposition in consideration of the apparent relatively
high activity of endogenous genetic elements. (2) Eval-
uate the data from transposon-mediated induction of
cancer in mouse studies in terms of risks to patients un-
dergoing SB-based gene therapy. (3) Discuss ap-
proaches that are required for dealing with the
identified risks of transposon-mediated adverse events
in the clinic.

TRANSPOSONS AND NATURAL GENETIC VARIATION
IN HUMAN CELLS

Approximately 45% of the human genome is com-
posed of transposable elements75,76 and up to two-
thirds77,78 of chromosomes may be derived from
transposons that have been adapted to support cell
function. Transposons are divided into 2 classes. Class
I transposons are retro-elements that spread by
a copy-and-paste mechanism whereby the transposon
is transcribed and the RNA transcript reverse–
REV 5.1.0 DTD � TRSL620_proof � 9
transcribed for insertion elsewhere in the genome. Class
II transposons, which include the SB system, are DNA
sequences that can ‘‘hop/jump’’ from 1 site to the next
via a cut-and-paste mechanism. The 2 classes of trans-
posons have distinctive features that are important con-
siderations in gene therapy.

Retrotransposable elements. Class I transposons com-
prise about 42% of the genome and are categorized into
4 subtypes. The first are long interspersed elements
(LINEs) that are up to 6–8 kb in length; there are about
500–800,000 copies of these elements, of which about
100 are active and about 10 may be highly active
(‘‘hot’’) as a result of encoding the necessary products
for integration of their RNA polymerase II transcription
product.79 The second subtype of class I transposons
comprises about 1.5 million short interspersed
elements of about 100–300 bp that are transcribed by
RNA polymerase III and litter the entire genome. The
third category comprises a relatively undefined set of
sequences that are several hundred bp in length and
probably transcribed by RNA polymerase II. A fourth
category comprises the nearly half-million retrovirus-
like, human endogenous retroviral sequences that
appear to be remnants of retroviruses that invaded the
genome over eons and since degraded; these account
for about 8% of the human genome. Resurrection of
a consensus human endogenous retroviral-K sequence
indicated that these elements preferentially integrated
into or proximal to transcriptional units.80 Of a total
set of nearly 3 million retrotransposable elements,
only a subclass of LINEs, designated L1Hs, are active
and responsible for insertional mutagenic events that
result in genetic disease,79,81 including cancer.82,83

The activity of LINEs in cells and their potential for
causing deleterious mutations in human genomes has
been known for decades.84-86 Nevertheless, the huge
number of retro-elements, which have not been linked
to disease-causing mutations, led to the inference that
they were largely inactive and played roles mainly in ge-
nome evolution.87-89 This notion was reconsidered
when whole genome sequencing became
available.90,91 Extensive L1 insertions were found in
somatic neuronal cells.92,93 L1 mobilization appeared
to occur in the absence of methyl-CpG-binding pro-
tein-2, a protein involved in global DNA methylation
and human neurodevelopmental diseases.94 Other stud-
ies found abundant new retro-element integrations,
some of which were associated with cancer.95,96 A
failure in epigenetic silencing may account for the
rare cases of L1s introducing somatic genetic
lesions,97,98 which are relaxed in germline cells.99 L1
activity can trans-mobilize short interspersed element
sequences as well.100 Moreover, in the mouse genome
endogenous retroviral elements can also spread,101
January 2013 � 11:12 pm � ce
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Fig 2. DNA transposition. DNA transposition, as exemplified by the

Sleeping Beauty (SB) transposon system, is a cut-and-paste reaction

in which a transposon containing an expression cassette with a thera-

peutic gene (TG) and its promoter (pentagon) is delivered to target

cells wherein the transposon is cut out of the plasmid and inserted

into a chromosome. The inverted terminal repeats (inverted set of dou-

ble arrowheads) define a transposon. The second part of the SB system

is SB transposase, which in this example is carried in a separate ex-

pression cassette that is on the same plasmid but not in the transposon.

The SB transposon will only integrate into TA Q24-dinucleotide basepairs

(about 200 million in mammalian genomes). (1) The plasmid is deliv-

ered into a cell by any of several means and proceeds through the nu-

clear membrane (dotted oval) by a poorly understood process. (2) The

SB gene is expressed. (3) The transposase molecules enter the nucleus

and bind to the transposon. (4) Four transposases work in concert to

cut the transposon out of the plasmid and paste it (dotted lines) into

an AT sequence in chromatin (tangled line). A plasmid excision prod-

uct is left behind in this reaction (the transposon site is marked by an

X). Integration into a chromosome can confer sustained expression of

the gene of interest that is contained within the transposon.
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suggesting that there might be even more hopping
elements in the human genome.
Assuming about 1013 cells per human and just the 10

hot L1 retrotransposons, there would be around 1014 po-
tential mutagenic sequences in the average human;
more than 10,000 per basepair of genomic sequence.
Clearly, the controls over these elements are extraordi-
narily tight such that few actually remobilize. Neverthe-
less, given the immensity of this background of
elements, there is a strong hint that the human genome
has adapted to accommodate insertion of transposon se-
quences. The identity of these controls is at least in part
epigenetic, and their induction remains to be clarified.
Although retro-transposition and DNA transposition oc-
cur by different mechanisms (copy-paste compared
with cut-and-paste), the phenotypic results will be sim-
ilar when integration interrupts a genomic sequence that
either encodes proteins or regulates their expression. As
discussed in detail below, the SB transposase has little
preference for integration into protein-encoding genes
whereas retro-transposable elements appear to have
a preference for integration into protein-coding genes.
These controls over insertional damage by endogenous
transposons will likely be relevant to transposons used
for gene therapy.

DNA transposons. Class II transposons are DNA se-
quences that are excised from the genome for insertion
elsewhere in the same, or different DNA molecule, by
a cut-and-paste mechanism (Fig 2). The transposon
sequence that is excised is precise in that the termini
of the transposed sequence are exact. However, when
the donor DNA sequence is repaired, there is often
a ‘‘footprint’’ that is left, which in the case of SB,
appears to vary according to cell type, but often is
a 5bp TAC(A/T)G insertion.102 The approximate
300,000 class II transposons comprise about 3% of the
human genome. Active class II transposons are
defined by inverted terminal repeats that flank
a transposase gene that commonly does not have
a promoter and, thus, is dependent on integration
proximal to an endogenous promoter. This feature
keeps the transposon from remobilizing in most cases
but does allow spread of the transposon under some
circumstances when the transposase gene is
activated.103 In general, transposons and viruses are
both natural pathways for introduction of new genetic
material into cells. However, the general evolutionary
strategy of many viruses is to infect and make many
viral particles, regardless of consequences to the cell
(organism), for further infection of other hosts. In
contrast, transposons generally only occasionally
insert into cellular genomes but are carried over
evolutionary periods in all the offspring of the cell.
REV 5.1.0 DTD � TRSL620_proof � 9
The Sleeping Beauty transposon/transposase system for
gene therapy. We, and others, explored the potential of
DNA transposons for use as vectors for transgene deliv-
ery104 based on their capacity to accommodate genetic
cargos of up to, and on occasions, more than 10
kbp69,105-107 (Fig 2). No active class II transposon has
been uncovered in the human genome, although many
sequencing projects mask repetitive elements for
convenience of analysis. Indeed, because active class
II transposons are exceedingly rare but useful for gene
transfer, the SB system (transposon plus cognate
transposase) was resurrected from an approximate 14
million-year sleep from salmonid genomes.104 As
a result of its origin in fish (last common ancestor for
fish and humans lived about 500 million years ago),
the SB transposase does not recognize class II
transposons in the human genome. Since its first use as
gene therapy vector,105 the transposase has been re-
engineered for increased activity, from SB10104

through SB11106 and other intermediates108 to the
extremely hyperactive SB100X.109 Likewise, the
January 2013 � 11:12 pm � ce
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inverted terminal repeat structure of original transposon,
T, also has been re-engineered for greater activity to
produce T2 and T3106 as well as other versions.107

For current clinical applications of the SB system,
the active transposase gene is supplied in trans rather
than being incorporated into the plasmid carrying the
therapeutic transposon. As a result, the plasmid is
smaller than it would be with the SB transposase
expression cassette, which leads to more efficient
delivery and transposition.69,106 However, a SB
transposon can be on the same plasmid (cis) rather
than on a different plasmid (trans) as the transposase
expression cassette. This would reduce cost, as only
1 clinical-grade DNA plasmid would be needed, but
this would be at the risk of decreased efficiency of
gene transfer. This has ‘‘real world’’ implications be-
cause patients enrolled on clinical trials infusing ge-
netically modified T cells have varying abilities to
donate peripheral blood affecting the quality and quan-
tity of T cells available for transposition. Thus, the
ability to titrate the amount and ratio of 2 DNA plas-
mids coding for transposon and transposase facilitates
the generation of patient-specific T cells.
The advent of the SB system demonstrated advan-

tages of transposons as vectors–they are easy to use if
they can be delivered into cells, they result in precise in-
tegration of a defined genetic sequence that is flanked
exactly by the inverted repeats of the transposon, and
each integration event is separate,110 such that conca-
temers do not arise from transposition (note, conca-
temers of transposons are often introduced purposely
into genomes by illegitimate recombination for inser-
tional mutagenic studies described later in the review).
A further advantage of the SB system, but not all other
transposons, is that it requires only a TA sequence for
integration, with very few preferences for integration
unlike most integrating viruses.111 There are about
200 million TA sites in the human genome, which is ap-
pealing for obtaining a wide distribution of integrated
vectors. However, not all TA sites are apparently equal.
SB transposons, unlike other transposons, appear to pre-
fer ‘‘flexible’’ TA sites112,113 that can be screened in any
genetic locus.72 Nevertheless, of all of the integrating
vectors currently under study, the SB system appears
to have the least preference for integration either into
or proximal to transcriptional units.114 As a conse-
quence, the SB transposon system has been developed
as a leading nonviral vector for gene therapy (currently
in clinical trials) that has the advantages of using naked
DNA and chromosomal integration of the therapeutic
expression cassette. The SB vector has been validated
for ex vivo gene delivery to stem cells, including T-cells
for the treatment of lymphoma, and SB transposons
have been delivered to liver for treatment of various sys-
REV 5.1.0 DTD � TRSL620_proof � 9
temic diseases in mice, including hemophilia105,115,116

and mucopolysaccharidoses types I and VII.117

The possibility of remobilization of a transposon from
residual transposase activity is a theoretical concern
(Fig 3). In most studies with a promoter that has a lim-
ited duration of expression such as the CMVearly pro-
moter, expression of SB transposase from an episomal
plasmid is transient (eg, in the liver transcription of
the SB transposase gene is reduced about 10,000 fold
over the first few days following uptake by hepato-
cytes).118 Human cells have developed self-defense
mechanisms to prevent the continued transposases as
derived protein degradation products can interfere
with their enzymatic activity.119 In addition, the trans-
posase, since it is derived from fish, would be immuno-
genic a subject to immune mediated clearance.
Nevertheless, the possibility of a few cells continuing
to express transposase cannot be ruled out. When
a SB transposon is re-mobilized, it will leave a ‘‘foot-
print,’’ an insertion or deletion that is variable in length,
but often an addition of 5bp.102 In an exon that encodes
a polypeptide, this would result in a frameshift leading
to an abnormal protein. Because (1) SB transposons do
not have a pronounced preference for transcriptional
units, (2) exons comprise no more than 2% of the human
genome, and (3) the rate of excision of a transposon in
a cell is less than 1024 based on gene deliveries to
liver118 and in transgenic mice (section on transposon-
mediated induction of cancer, below), the chance of
an adverse event is estimated to be less than 1026. It
may be far lower—too rare to detect. Since few genes
are haplo-insufficient, the probability of an adverse
event occurring from mutation of a single allele will
be significantly lower.
One reoccurring question is whether SB transposons

might ‘‘skip along a genome’’ (serially inserting and
excising) like a rock skipping across the surface of
a pond before sinking into a final resting site. This is
thought to be highly unlikely for 2 reasons. The first is
evolutionary120; such a process would damage genomes
by leaving footprints and, thus, be counterproductive to
minimal disturbance of the host genome. The second is
based on the conserved nature of DDE transposases,
including SB,121 in which the flexible target sites for
integration72,112 undergo bending to render strand-
transfer irreversible by facilitating the snapping back
of the integrated DNA following the concerted single-
strand invasion steps.122 That is, upon integration, the
2 ends the transposon comprising the synaptimal com-
plex would snap, like a mousetrap that has been sprung.
In addition to explaining how transposases have evolved
to avoid skipping, this mechanism explains why trans-
position reactions are so infrequent even when all the
necessary components are in excess.
January 2013 � 11:12 pm � ce
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Fig 3. Potential consequences of remobilization of Sleeping Beauty

(SB) transposons. The schematic illustrates the initial transposon inte-

gration site (orange) and subsequent hopping to other TAQ25 sites in chro-

matin, one of which might induce an adverse transforming event.
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Alternative measures to prohibit sustained activity in-
clude supplying messenger RNA (mRNA) transcribed
in vitro as the source of transposase,123 although the in-
stability of mRNA and reliable delivery of sufficient
quantities may introduce quality control issues if used
for gene therapy. An alternative is to construct
transposon-expression cassettes in which the promoter
for the transposase gene is inside the transposon124;
with this configuration, expression of the transposase
gene would cease, although there is the drawback the
outward directed transposase-driving promoter then
would be positioned to potentially activate transcription
of nearby genes.
We have estimated potential problems of remobiliza-

tion of SB transposons from data accrued from multiple
studies conducted with mice. The multitude of remobi-
lization experiments in mice using specialized SB trans-
posons is discussed in detail below. In addition to the
experimental approaches in mice, we can use evalua-
tions of clinical quality-control criteria to estimate the
possible extent of transposon hopping in transduced
cells. Currently, SB mRNA can be detected by qRT-
PCR in 100 ng but not in 20 ng of T-cell DNA; 1
mRNA/20ng of T-cell DNA corresponds to about 1
SB mRNA/2 3 1010 cellular mRNA molecules. Since
the average cell expresses about 10,000 mRNA spe-
cies,125 the detectable limit is equivalent to 1 SB
mRNA in 2 3 106 T cells. In fibroblasts, transposition
efficiencies are about 1% (unpublished compilations),
which would suggest a maximal rate of 1 remobilization
event in about 108 T cells if a single mRNA is adequate
to provide the necessary level of transposase. Moreover,
remobilization per se does not imply adverse conse-
quences. The range in new sites intowhich a remobilized
transposon carrying a therapeutic expression cassette
integrates is the same as the range of original sites
intowhich the transposon originally integrated. Because
REV 5.1.0 DTD � TRSL620_proof � 9
less than 2% of the genome comprises exons74 and since
integration of transposons causes little effect on endog-
enous genes,126 the chances of remobilization into an
exon would be about 1 event in 1010 cells. Assuming
that 10% of genes could contribute to a transformed
phenotype, the chances of remobilization leading to
an adverse event would be about 10211. This is a very
low number that is consistent with the mouse studies de-
scribed later in this review. The number is much lower
than the background level of retro-transposition, de-
scribed next. In the case of the current clinical trials, dis-
cussed below, up to 1010 SB-modified T cells may be
infused, which would suggest the odds of a remobiliza-
tion event are up to 10%. However, the footprint would
be inconsequential because the repaired integration site
would have been mutated by the original insertion that
would direct an alternative polypeptide that was par-
tially encoded by the transposon’s inverted terminal re-
peat. The new integration event would have the same
probability of leading to an adverse consequence as
any of the far more frequent original integration events.

Recent insights into chromosomal organization and
gene expression in humans. Sequencing of genomes ob-
tained from cancer cells has revealed the first direct infor-
mation on the variation of mutation rates in
chromosomes of somatic cells and the importance of
chromatin organization and conformation.127,128 The
ENCODE project,74 which employed 147 different cell
types found that far from being composed largely of
‘‘junk’’ DNA, about 80% of the human genome was
involved in some sort of regulated event and that
95% of the genome was within 8 kbp of a protein-
binding site. Moreover, the landscape of transcription
in human cells is diverse with about 40% of the
genome being transcribed at levels that spanned six
orders of magnitude for polyadenylated RNA and
with the average gene having four splicing isoforms
although there is always a dominant species that
comprises 30% or more of the splicing alternatives
for a given transcriptional unit.129 Strikingly, a large
proportion of the transcripts in the human genome
appear to be initiated from repetitive elements, mainly
retrotransposons. It is now clear that transcriptional
activation is far more complex than thought
heretofore.130 Enhancer elements can work over long
distances via chromosomal looping with only about 7%
of the looping interactions being to the nearest
gene.131,132 Clearly, physical proximity is not a simple
predictor for gene activation by incoming transgenic
expression cassettes. The selectivity of transcriptional
regulatory proteins to interact with selective promoters
may explain the pronounced lack of activation of
endogenous genes that lead to cancer by enhancers in
lentiviral vectors. These findings support earlier
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findings that murine leukemia virus integration up to 100
kbp upstream of the c-myb locus could activate a linearly
distal locus through chromosomal looping loci.133

The insertion of transgenic DNA into chromosomes
can alter epigenetic marks that affect gene expression,98

and integrated retroviral cassettes are subject to epige-
netic silencing through identified cellular proteins.134

The advent of high throughput sequencing revealed
a number of surprises. In sum, the interactions between
regions of the genome that affect gene expression are
complex and not based entirely on physical (linear)
proximity. Cells have a bewildering level of variety in
gene expression at both the transcriptional and RNA
processing levels. Moreover, the genome appears to
have the ability to assimilate transposable elements
and even make use of them. All of these features
strongly suggest that the genome is unexpectedly flexi-
ble in terms of events that would be expected to desta-
bilize its panoply of functions. Recent findings from
the 1000 Genomes Project and other whole genome se-
quencing projects support this assertion.

Genetic variation in the human population. Deep
sequencing has found that insertions and deletions (in-
dels), which are equivalent to insertions of transposons,
are about 10-fold less frequent in the human genome
than single nucleotide polymorphisms (22,000 vs 1800
per genome compared with reference) with up to 50%
of the indels being novel in any given individual.135,136

More pertinent to the consequences of insertional
mutagenesis, these studies have revealed that the
average human genome has approximately 250 to 300
loss-of-function mutations, with 50 to 100 in genes
related to human disease,137,138 and about 20
completely inactivated genes139 as classified by the
Human Gene Mutation Database [http://www.hgmd.
org]. Studies of genome samples from individuals and
families have recently shown that copy number
variations, especially of L1 and Alu retro-elements,
were found in somatic tissues from the same individual,
with preferred integration into protein-coding genes,
many of which regulate growth82,93,140-142 but nearly
none associated with disease. Thus, the human genome
is not only highly variable,143,144 but it can sustain
genetic hits from transposons without apparent genetic
consequences. This conclusion is consistent with early
studies of transposition in nematodes where it was
found that despite a strong preference for integration
into transcriptional units145 many, if not most,
integrations did not have a phenotypic effect. Detailed
studies revealed that the transposons could be removed
during pre-mRNA processing.126

Genetic consequences of natural transposition and
therapeutic transposition. One way of addressing inser-
tional mutagenesis by SB transposon vectors is to com-
REV 5.1.0 DTD � TRSL620_proof � 9
pare nearly random insertion with natural variation and
the germline mutation rate. The background mutational
rate from the approximate 1800 indels/individual and
the approximate 1014 hot retrotransposable elements
in a human may not be apparent due to epigenetic si-
lencing or activation of immune responses that are
able to detect aberrant cells. Thus, the number of poten-
tially mutagenic elements is millions, if not billions, of
fold greater than the number originating from gene
therapy using SB transposons. Superficially, with the
histories of gamma-retrovirus- and lentivirus-mediated
gene therapies in mind, it would appear that the
consequences of insertions of SB transposons carrying
a therapeutic cassette with enhancers that are not
designed to interact promiscuously with all promoters
should be relatively small. The probabilities of
adverse consequences can be further analyzed. As
only approximately 1.2% of the genome encodes
proteins,74 about 98% of integrations are unlikely to
affect protein sequences in any way other than their
rates of expression, which can vary widely. The
remaining 2% of integrations that might occur into
exons must be viewed in terms of other conclusions
from deep sequencing of human genomes. The
average gene is multiply spliced giving isoforms that,
for the most part, have undefined specific roles. Thus,
only 1 of the isoforms of multiply spliced genes
would be affected by an exonic integration, which
may be the reason that background integration of
retrotransposable elements does not cause as many
adverse events as might be expected. As with
retroviruses that can be epigenetically silenced,146

SB transposons, epigenetic silencing and RNA
interference are probable causes of either complete
suppression or reduction in transgene expression.147-150

Although some transposase-like enzymes used for
gene transfer (eg, the phiC31 recombinase) can cause
chromosomal translocations,151 the SB transposase is
not associated with such activities when used for inte-
gration of a therapeutic expression cassette.152 We
note that the situation is different when an SB transpo-
son is hopped out of a concatemer of transposons for in-
tegration elsewhere. As discussed in the following
section, in this case chromosomal rearrangements
have been observed close to the locus in which the con-
catemer resides. This situation will not be applicable in
gene therapy settings where the chromosomes will not
be pre-established to have multiple transposons in a sin-
gle locus.

TRANSPOSON-MEDIATED INDUCTION OF CANCER/
LEUKEMIA IN MICE

Induction of cell transformation by SB transposons in
mice. The SB and piggyBac transposon systems have
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been used to induce cancer in transgenic mice via an in-
sertional mutagenesis mechanism.153,154 This may
indicate, upon initial consideration, that transposons
are potentially dangerous from a genotoxicity
perspective. However, more careful consideration of
the differences between the experimental conditions
generated in mice (described in the following
sections) and those actually encountered by patients in
a clinical setting reveals that cancer is an unlikely
outcome as a side effect of therapeutic transposon
delivery. First, in the mouse experiments, the
transposon vectors are especially designed to induce
alterations to endogenous genes. Second, the mouse
experiments are done in a way that results in the
mobilization of multiple copies of the transposon in
every cell of a given tissue. Third, in the mouse
experiments, the transposase enzyme is expressed
continuously in all cells of a given tissue throughout
the lifetime of the animal. Last, in most of the
experiments described so far in mice, efficient cancer
induction was only achieved if the mouse was
genetically predisposed to cancer, often by including
a tumor suppressor gene mutation in the background.
These points suggested to us, even in consideration
that humans have far more cells and longer life-spans
than mice, that unless the above conditions are met,
cancer would be an unlikely sequelae of one time
transposon vector mobilization and transposition into
human chromosomes. Indeed, our published and
unpublished observations do demonstrate that cancer
is not induced at any significant level unless
a transposon is used that carries a strong promoter/
splice donor, is present in all cells in the body in
multiple copies, and mobilized continuously for the
lifetime of the animal. In addition, we have found that
for most tissues, efficient cancer development requires
a genetic background that confers predisposition to
induction of cancer. Thus, given the limitations of
using mice as a model system (fewer cells per organ
and considerably shorter lives) in the setting of human
gene therapy, we do not expect cancer as a likely side
effect of use of transposon vectors.

General scheme for transposition-mediated mutagene-
sis in mice. We were led in our efforts to develop a flex-
ible system for somatic insertional mutagenesis using
transposons by a large body of literature, and our own
work, on the induction of cancer in mice using murine
leukemia viruses. Murine leukemia viruses can cause
cancer by acting as an insertional mutagen, either insert-
ing near and activating proto-oncogenes or inserting
within and inactivating tumor suppressor genes.155

The features of the integrated provirus that can cause
these effects on endogenous genes, are the enhancer
and promoter sequences within the long terminal
REV 5.1.0 DTD � TRSL620_proof � 9
repeats (LTR), the splice donor and acceptor within
the body of the virus, or the polyadenylation site within
the long terminal repeat.156-158 The tumor DNAs can be
used to isolate new candidate cancer genes, by using the
integrated provirus as a molecular tag. Sites of the
genome that are recurrently mutated by proviral
insertion (ie, in multiple, independent tumors) are
called common integration sites and have been shown
by experience to harbor cancer genes.
We hypothesized that an SB transposon, designed to

mimic the ability of a retroviral element to cause both
gene loss- and gain-of-functions, could be used to
‘‘tag’’ cancer genes in solid tumors. The transposon,
T2/Onc contains splice acceptors (SA)s followed by
polyadenylation signals in both orientations (Fig 4).
Upon insertion into introns, these elements are designed
to intercept upstream splice donors and elicit premature
transcript truncation. Between the 2 SAs are sequences
from the 50LTR of the murine stem cell virus (MSCV),
which contain strong promoter and enhancer elements
that are methylation-resistant and active in stem
cells.159-161 Immediately downstream of the LTR is
a splice donor for splicing of a transcript initiated
from the LTR into a neighboring gene. In subsequent
work, other promoter sequences replaced the MSCV
LTR sequences and similarly effective transposons for
myeloid leukemia162 or carcinoma induction were cre-
ated.163 The original T2/Onc transposon and later deriv-
atives are, thus, specialized to identify both tumor
suppressors and oncogenes.
Transgenic lines harboring multi-copy (usually �25–

200 copies) chromosomal concatemers of T2/Onc, or
similar transposons, are used in these studies. Transpo-
sase can be supplied in a ubiquitous or tissue-specific
manner. In both cases, cohorts of mice are aged for tu-
mor development. Once tumors are harvested, the trans-
poson insertions are PCR amplified and sequenced.
Usually hundreds or thousands of insertions per tumor
genomic DNA are identified. Regions of the genome
and associated genes that are mutated by transposon in-
sertion in multiple, independent tumors are sought using
bioinformatic and statistical analyses. Clustering of in-
sertions in certain regions, beyond what is expected
by chance, indicates selection for the rare insertion
events, among many neutral or negatively insertion
events that can give the cell a selective growth or sur-
vival advantage. The accumulation of novel insertions
throughout their genomes causes the eventual appear-
ance of tumors in mice. The general use of the SB
system for identification of cancer genes is illustrated
in Fig 5. The insertion sites are analyzed by looking
for T2/Onc insertions at reproducibly mutated genes.
In this way, we can develop a cancer genetic fingerprint
for various tumor types.
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Fig 4. The T2/onc transposon vector. This Sleeping Beauty (SB) vec-

tor contains elements designed to elicit either transcriptional activa-

tion (Mouse Stem Cell Virus 50-LTR and splice donor [SD]) or

inactivation (splice acceptors [SA] and polyadenylation signals

[pA]). The inverted terminal repeats are indicated by the arrows la-

beled ITR. ITR, inverted terminal repeats.
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When T2/Onc was combined with SB transposase in
both wild-type and cancer-predisposed mice, there was
either induction or acceleration of tumors and/or leuke-
mia.164,165 In both cases, the SB-accelerated or initiated
tumors were characterized by recurrent somatic, tumor-
specific insertions that occurred at dozens of known and
novel cancer-genes. The hyperactive SB11 transpo-
sase,106 expressed from the nearly ubiquitous Rosa26
promoter in transgenic mice, has been used for most of
these studies. When 2 different versions of T2/Onc were
combined with the Rosa26-SB11 transgene in mice, the
result was almost uniform development of T-cell malig-
nancy,165,166 which in some mice co-occurred with
glioma brain tumors.166

Tissue-specific mutagenesis with SB has been used to
develop informative models of various forms of human
solid tumors. Tissue-specificity was achieved by using
Cre-recombinase that could be activated in a tissue-
specific manner to excise a loxP-flanked stop cassette
that separated the SB11 complementary DNA from the
Rosa26 promoter. Cancers and/or pre-neoplasias could
be induced in mice in a variety of tissues, including the
liver, gastrointestinal tract, brain (glioma and medullo-
blastoma), and the prostate.167-169 For instance, analyses
of over 16,000 transposon insertions identified 77
candidate colorectal cancer genes, 60 of which are
mutated and/or dysregulated in human candidate
colorectal cancer and thus are most likely to drive
tumorigenesis. Moreover, analysis of the co-occurrence
of transposon insertion sites within gastrointestinal tu-
mors, using a model that assumes a Poisson distribution
of insertions at TA dinucleotides, identified common
co-occurring insertions that were detected more fre-
quently than expected by chance (eg, Apc and Nsd1, 2
known tumor suppressors).55A screen for pancreatic can-
cer genes on a KrasG12D background has identified many
candidate cancer genes and validated a novel epigeneti-
cally silenced tumor suppressor gene, USP9X.170

Control lines of mice and induction of tumors/leukemia.

The experience of performing many of these studies in
mice has shown that unless many conditions are met,
tumor induction by transposon mobilization is not
efficient. First, expression of the SB transposase by
REV 5.1.0 DTD � TRSL620_proof � 9
itself, neither has ever revealed any abnormalities in
mice, nor an increase in cancer incidence, despite being
expressed ubiquitously for the lifetime of the mice. This
suggests that SB transposase does not cause significant
chromosomal instability or mobilize endogenous mam-
malian Tc1/mariner-family transposons at a rate high
enough to cause cancer. Similarly, mice carrying just
the transposon vectors are normal with no increase in
cancer when aged, compared with nontransgenic con-
trols.
Our work also suggests that a strong promoter se-

quence within the transposon is required for efficient tu-
mor induction. When the Rosa26-SB11 transgene was
employed to cause body-wide, lifelong mobilization
of a transposon vector called T2/GT3, which lacks a pro-
moter but contains a SA and polyadenylation signal,
there was no significant increase in cancer incidence
compared with control mice. In stark contrast, as men-
tioned above, lifelong mobilization of T2/Onc-like
transposons does cause an increase in cancer incidence
attributable to insertional mutagenesis. This suggests
that T2/GT3 lacks a critical element for efficient cancer
induction, probably a promoter/splice donor sequence
that allows efficient oncogene activation to occur. How-
ever, SB-catalyzed T2/GT3 mobilization in p531/2mu-
tant mice caused an apparent decrease in tumor latency,
suggesting that a transposon without a promoter can ac-
celerate tumor development in a cancer-prone genetic
background (D.A. L., unpublished observations). Such
studies highlight the influence that genetic background
could have on genotoxicity by integrating vectors.

The importance of genetic background for oncogene
discovery. As mentioned above, the efficient induction
of T-cell malignancy165 and myeloid leukemia162 did
not require tumor-predisposed genetic backgrounds.
Moreover, a T2/Onc3, with a CAG promoter in place
of the MSCV LTR efficiently induces a variety of solid
tumor types at low frequencies without a predisposing
background.163 Tissue-specific mobilization of T2/
Onc is able to induce gastrointestinal track epithelial ad-
enomas and adenocarcinomas in Villin-Cre cells in
transgenic mice167 and liver-specific mobilization of
T2/Onc using albumin-Cre and Rosa26- loxP-flanked
stop-SB11 mice can cause full-blown hepatocellular
carcinoma in otherwise wild-type mice.169 However,
in most other tissue-specific mutagenesis experiments,
mice do not develop tumors efficiently unless also car-
rying tumor-susceptibility mutations such as p53R270H

or KrasG12D.170 Moreover, the expression cassette in
the transposons contained only transcriptional control
elements and RNA processing motifs that were de-
signed to cause maximal chaos when inserted into or
proximal to chromosomal genes. Such would not be
the case when SB transposons are used for gene therapy.
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Fig 5. Using Sleeping Beauty (SB) for cancer-gene screens in mice. Step 1. Breed SB transposon and transposase

transgenes together. In some cases, arrangements for tissue-specific expression of the transposase will be made or

specific cancer-predisposed backgrounds could be used. Step 2. Transposition in somatic cells causes random

insertion mutations. A correctly designed transposon vector can cause gain or loss-of-function mutations. Step

3. Mice are aged for tumor development. Step 4. Tumors develop as a result of transposon-induced mutations.

Step 5. Transposon insertions are cloned from tumor genomicDNA. Step 6. Clones are sequenced. Step 7. Insertion

sites are mapped and annotated with respect to nearest genes. Those genes repeatedly mutated in multiple, inde-

pendent tumors are designated as common insertion sites (CIS). Step 8. CIS can be analyzed to determine what

genes and genetic pathways contribute to cancer. Cancer genetic fingerprints are obtained that can be characterized

by networks of interacting cancer-gene mutations. These genes can be queried in relevant human cancers.
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These studies have a bearing on the estimated risk for
SB transposon vectors for causing cancer when used for
human gene therapy. In the case of human gene therapy,
the copy number of integrating vectors would be far
fewer, ideally 1 or 2, rather than 25–200 per cell, as in
mouse mutagenesis experiments. The vectors would
not be designed for disruption of endogenous genes,
by loss- or gain-of-function. Importantly, the period of
transposon mobilization would be transient. Thus, the
experience of mouse somatic mutagenesis experiments
REV 5.1.0 DTD � TRSL620_proof � 9
suggests that the development of malignancies as a side
effect of therapeutic gene delivery to human cells using
SB should be an unlikely event. The vector design, copy
number, and duration of SB transposase expression are
all fundamentally different than what occurs during the
mouse somatic mutagenesis screens. Cancer induction
in mice using SB mutagenesis was revealed to be an
inefficient process requiring great efforts to maximize
the number of transposon insertion mutations per cell
and have many cells at risk for cancer development.
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