Robert Sikorski, M.D., Ph.D., is Head of the SAB and consulting Chief Medical Officer at Immusoft. Dr. Sikorski currently serves as the Managing Director of Woodside Way Ventures, a consulting and investment firm that helps biotechnology companies and investors advance lifesaving technologies through clinical development. Prior to that, he was Chief Medical Officer of Five Prime Therapeutics (acquired by Amgen). Earlier in his career, he played a leading role in building MedImmune’s oncology portfolio through partnering and acquisition efforts. Before joining Medimmune, he led late-stage clinical development and post-marketing efforts for several commercial drugs and drug candidates at Amgen. Dr. Sikorski began his career as a Howard Hughes Research Fellow and Visiting Scientist at the National Cancer Institute and the National Human Genome Research Institute in the laboratory of Nobel Laureate Harold Varmus. Additionally, he has served as an editor for the journal Science and Journal of the American Medical Association. Dr. Sikorski obtained his MD and PhD degrees as a Medical Scientist Training Program awardee at the Johns Hopkins School of Medicine.
Paula Cannon, Ph.D.,is a Distinguished Professor of Molecular Microbiology and Immunology at the Keck School of Medicine of the University of Southern California, where she leads a research team that studies viruses, stem cells and gene therapy. She obtained her PhD from the University of Liverpool in the United Kingdom, and received postdoctoral training at both Oxford and Harvard universities. Her research uses gene editing technologies such as CRISPR/Cas9, to develop treatments for infectious and genetic diseases of the blood and immune systems. In 2010, her team was the first to show that gene editing could be used to mimic a natural mutation in the CCR5 gene that prevents HIV infection, and which has now progressed to a clinical trial in HIV-positive individuals.
Michael C. Carroll, Ph.D., is a Senior Investigator at Boston Children’s Hospital and Professor of Pediatrics, Harvard Medical School. His recent research focuses on two major areas, i.e. neuroimmunology and peripheral autoimmunity. Using murine models of neuro-psychiatric lupus, his group is testing their hypothesis that interferon alpha from peripheral inflammation enters the brain and mediates synapse loss and symptoms of cognitive decline observed in patients. Following-up on a large genetic screen in schizophrenia patients, they recently reported that over-activation of a process known as “complement-dependent, microglia-mediated synaptic pruning” in novel strains of mice can induce psychiatric symptoms of schizophrenia. In a murine lupus model, his lab has identified that self-reactive B cells evolve with kinetics similar to that of foreign antigen responding B cells providing a novel explanation for epitope spreading. Dr. Carroll received his PhD from UT Southwestern Medical School and his postdoctoral training with the Nobel Laureate, Professor Rodney R. Porter at Oxford University. He is a recipient of awards from the Pew Foundation, American Arthritis Foundation and the National Alliance for Mental Health.
Hans-Peter Kiem, M.D., Ph.D., is the Stephanus Family Endowed Chair for Cell and Gene Therapy at Fred Hutchinson Cancer Research Center. He is a world-renowned pioneer in stem-cell and gene therapy and in the development of new gene-editing technologies. His focus has been the development of improved treatment and curative approaches for patients with genetic and infectious diseases or cancer. For gene editing, his lab works on the design and selection of enzymes, known as nucleases, which include CRISPR/Cas. These enzymes function as molecular scissors that are capable of accurately disabling defective genes. By combining gene therapy’s ability to repair problem-causing genes and stem cells’ regenerative capabilities, he hopes to achieve cures of diseases as diverse as HIV, leukemia and brain cancer. He is also pioneering in vivo gene therapy approaches to make gene therapy and gene editing more broadly available and accessible to patients and those living with HIV, especially in resource-limited settings. He received his M.D. and Ph.D. at the University of Ulm, Germany.
Bruce Levine, Ph.D., Barbara and Edward Netter Professor in Cancer Gene Therapy is the Founding Director of the Clinical Cell and Vaccine Production Facility in the Department of Pathology and Laboratory Medicine and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania. First-in-human adoptive immunotherapy trials include the first use of a lentiviral vector, the first infusions of gene edited cells, and the first use of lentivirally-modified cells to treat cancer. Dr. Levine has overseen the production, testing and release of 3,100 cellular products administered to more than 1,300 patients in clinical trials since 1996. Dr. Levine is a recipient of the William Osler Patient Oriented Research Award, the Wallace H. Coulter Award for Healthcare Innovation, the National Marrow Donor Program/Be The Match ONE Forum 2020 Dennis Confer Innovate Award, serves as President of the International Society for Cell and Gene Therapy, and on the Board of Directors of the Alliance for Regenerative Medicine. Dr. Levine received a B.A. in Biology from the University of Pennsylvania and a Ph.D. in Immunology and Infectious Diseases from Johns Hopkins University.
Peter Sage, Ph.D., is an Assistant Professor of Medicine at Harvard Medical School and an Associate Immunologist at Brigham and Women’s Hospital. Dr. Sage is also a member of the Committee on Immunology (COI) at Harvard Medical School. Dr. Sage obtained his PhD in Immunology from Harvard Medical School in 2013, during which he received the Jeffrey Modell Prize. He completed a post-doctoral fellowship in the laboratory of Dr. Arlene Sharpe in the Department of Immunology at Harvard Medical School in 2017. Dr. Sage started his independent laboratory in 2017 at the Transplantation Research Center in the Division of Renal Medicine of Brigham and Women’s Hospital. Dr. Sage’s laboratory focuses on studying how the immune system controls B cell and antibody responses in settings of health and disease.